泛函分析(英语:Functional Analysis)
是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。
使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。
从现代观点来看,泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间,其上的范数由一个内积导出。这类空间是量子力学数学描述的基础。更一般的泛函分析也研究Frechet空间和拓扑向量空间等没有定义范数的空间。
泛函分析所研究的一个重要对象是巴拿赫空间和希尔伯特空间上的连续线性算子。这类算子可以导出C*-代数和其他算子代数的基本概念。
希尔伯特空间
希尔伯特空间(Hilbert)可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。
巴拿赫空间
一般的巴拿赫空间(Banach)比较复杂,例如没有通用的办法构造其上的一组基。
对于每个实数,如果,一个巴拿赫空间的例子是“所有绝对值的次方的积分收敛的勒贝格可测函数”所构成的空间。(参看Lp空间)
在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
主要结果和定理
泛函分析的主要定理包括:
- 一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。
- 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。
- 哈恩-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。
- 开映射定理和闭图像定理。
泛函分析与选择公理
泛函分析所研究的大部分空间都是无穷维的。为了证明无穷维向量空间存在一组基,必须要使用佐恩引理(Zorn’s Lemma)。此外,泛函分析中大部分重要定理都构建于哈恩-巴拿赫定理的基础之上,而该定理本身就是选择公理(Axiom of Choice)弱于布尔素理想定理(Boolean prime ideal theorem)的一个形式。
选择公理(英语:Axiom of Choice,缩写AC)是数学中的一条集合论公理。这条公理声明,对所有非空指标集族,总存在一个索引族,对每一个,均有。选择公理最早于1904年,由恩斯特·策梅洛为证明良序定理而公式化完成。
非正式地说,选择公理声明:给定一些盒子(可以是无限个),每个盒子中都含有至少一个小球,那么可以作出这样一种选择,使得可从每个盒子中恰好选出一个小球。在很多情况下这样的选择可不借助选择公理;尤其是在“盒子个数有限”和“存在具体的选择规则”(当每个盒子都恰好只有一个小球具有某项特征)这两种情况下。关于“存在具体的选择规则”可以透过以下例子理解:假设有许多(甚至是无限)双鞋子,则我们可以选取每双鞋左边的鞋子构成一个具体的选择,由于在鞋子之中“存在具体的选择规则”(左边的鞋子不同于右边的鞋子),故不需要选择公理,仍可做出有效的选择。然而,假设有无限双袜子,且每双袜子都没有可区分的特征,在这种情况下,有效的选择只能通过选择公理得到。
尽管曾具有争议性,选择公理现在已被大多数数学家毫无保留地使用着,例如带有选择公理的策梅洛-弗兰克尔集合论(ZFC)。数学家们使用选择公理的原因是,有许多被普遍接受的数学定理,比如是吉洪诺夫定理,都需要选择公理来证明。现代的集合论学家也研究与选择公理相矛盾的公理,例如决定公理。
在一些构造性数学的理论中会避免选择公理的使用,不过也有的将选择公理包括在内。
公理
在传统逻辑中,公理是没有经过证明,但被当作不证自明的一个命题。因此,其真实性被视为是理所当然的,且被当做演绎及推论其他(理论相关)事实的起点。当不断要求证明时,因果关系毕竟不能无限地追溯,而需停止于无需证明的公理。通常公理都很简单,且符合直觉,如“a+b=b+a”。
不同的系统,会预计不同的公理。例如非欧几何的公理,和欧氏几何的公理就有一点不同;另外,集合论的选择公理在许多系统的建构中,也富有争议。有些系统坚持不预设选择公理。也有一些数学家在建构系统时,刻意排除掉皮亚诺公理中的数学归纳法,以确保所有的证明,都可以直接演算。
在数学中,公理这一词被用于两种相关但相异的意思之下——逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。和定理不同,一个公理(除非有冗余的)不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。
逻辑公理通常是被视为普遍为真的陈述(如 (A ∧ B) → A),而非逻辑公理(如a + b = b + a)则实际上是在一特定数学理论(如算术)中的定义性的性质。在后者的意思之下,公理又可被称为“公设”。一般而言,非逻辑公理并不是一个不证自明的事实,而应该说是在建构一个数学理论的过程中被用来推导的一个形式逻辑表示式。要公理化一个知识系统,就是要去证明该系统的主张都可以由数目不多而又可明确理解的陈述(公理)推导出来。一般来说都有多种方法来公理化一个给定的数学领域。
然而,逻辑公理系统也并非唯一。直觉主义逻辑、模糊逻辑等新的逻辑结构,都建立在略有差异的公理上。因此,与其把公理看作不证自明的事实,不如看作是在一个特定的数学或逻辑系统中,先于一切证明的前设。
传统的做法在《几何原本》中很好地描绘了出来,其中给定一些公设(从人们的经验中总结出的几何常识事实),以及一些“公理”(极基本、不证自明的断言)。公设
- 能从任一点画一条直线到另外任一点上去。
- 能在一条直线上造出一条连续的有限长线段。
- 能以圆心和半径来描述一个圆。
- 每个直角都会相互等值。
- (平行公设)若一条直线与两条直线相交,在某一侧的内角和小于两个直角,那么这两条直线在各自不断地延伸后,会在内角和小于两直角的一侧相交。
公理
- 等同于相同事物的事物会相互等同
- 若等同物加上等同物,则整体会相等。
- 若等同物减去等同物,则其差会相等。
- 相互重合的事物会相互等同。
- 整体大于部分。
结构主义的数学走得更远,并发展出没有“任一”特定应用的理论和公理(如体论、群论、拓扑学、向量空间)。“公理”和“公设”之间的差异消失了。欧几里得公设因为可以导出大量的几何事实而被创造出来。这些复杂事实的真实性依赖于对基本假定的承认。然而,若舍弃第五公设,则可以得到有更多内容的理论,如双曲几何。我们只需要准备以更弹性的方式来使用“线”和“平行”等术语。双曲几何的发展教导了数学家们公设应该被视为单纯的形式陈述,而不是基于经验的事实。
哥德尔完备性定理
哥德尔完备性定理是数理逻辑中重要的定理,在1929年由库尔特·哥德尔首先证明。它的最熟知的形式声称在一阶谓词演算中所有逻辑上有效的公式都是可以证明的。
上述词语“可证明的”意味着有着这个公式的形式演绎。这种形式演绎是步骤的有限列表,其中每个步骤要么涉及公理要么通过基本推理规则从前面的步骤获得。给定这样一种演绎,它的每个步骤的正确性可以在算法上检验(比如通过计算机或手工)。
如果一个公式在这个公式的语言的所有模型中都为真,它就被称为“逻辑上有效”的。为了形式的陈述哥德尔完备性定理,你必须定义这个上下文中词语“模型”的意义。这是模型论的基本定义。
在另一个方向上,哥德尔完备性定理声称一阶谓词演算的推理规则是“完备的”,在不需要额外的推理规则来证明所有逻辑上有效的公式的意义上。完备性的逆命题是“可靠性”。一阶谓词演算的实情是可靠的,就是说,只有逻辑上有效的陈述可以在一阶逻辑中证明,这是可靠性定理断言的。
处理在不同的模型中什么为真的数理逻辑分支叫做模型论。研究在特定形式系统中什么为可以形式证明的分支叫做证明论。完备性定理建立了在这两个分支之间的基本联系。给出了在语义和语形之间的连接。但完备性定理不应当被误解为消除了在这两个概念之间的区别;事实上另一个著名的结果哥德尔不完备定理,证实了对“在数学中什么是形式证明可以完成的”有着固有的限制。不完备定理的名声与另一种意义的“完备”有关,参见模型论。
更一般版本的哥德尔完备性定理成立。它声称对于任何一阶理论T和在这个理论中的任何句子S,有一个S的自T的形式演绎,当且仅当S被T的所有模型满足。这个更一般的定理被隐含使用,例如,在一个句子被证实可以用群论的公理证明的时候,通过考虑一个任意的群并证实这个句子被这个群所满足。完备性定理是一阶逻辑的中心性质,不在所有逻辑中成立。比如二阶逻辑就没有完备性定理。
完备性定理等价于超滤子引理,它是弱形式的选择公理,在不带有选择公理的策梅洛-弗兰克尔集合论中有着等价的可证明性。
泛函分析的研究现状
泛函分析目前包括以下分支: